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Abstract. The finite-lattice method of series expansion is generalized to the q-slate 
Polls model on the simple cubic lattice. It h found Uiat the mmputalional effort 
grows exponentially with the square of the number of series terms obtained, unlike 
two-dimensional lattices where the mmputational requirements grow exponentially wit11 
the number of terms. For the king (q = 2) case we have extended the low-lempemture 
series for the panilion functions, magnetization and zero-field suscepribility lo U" from 
u'. m e  high-temperature series for me zem-field parlition function is Mended from 
dB to vaz. Subsequent analysis gives aitical exponenu in agreement with those from 
field theoly. 

1. Introduction 

This is the first of a series of papers describing the application of the finite-lattice 
method of series expansion to various cases of the q-state Potts model. A major 
objective in this work is the study of the q = 3 case in three dimensions because of 
its relevance to quantum chromodynamics. However, in the course of this project we 
have developed extremely powerful techniques for series expansion. This has made 
it possible to obtain considerable extensions to many Potts model series and so we 
have been able to investigate a large range of lattice statistics problems. 

In this paper we describe the application of the finite-lattice method of series 
expansions to the derivation of high- and low-temperature expansions for the free 
energy of the Potts model on the simple cubic lattice. We present series for the 
Ising model which is the q = 2 case of the Potts model. We have been able to 
extend the low-temperature series for the zero-field partition function, magnetization 
and susceptibilty from order uu) (Sykes et ai 1973) or (M F Sykes, unpublished) 
to U%. The zero-field high-temperature series for the partition function has been 
extended from vis (Sykes ef al 1972) to vZ. The variables 11 = exp(-45/kT) 
and U = tanh(J/kT) are the usual low- and high-temperature model expansion 
variables for the Ising model. (A recent paper by Bhanot a a1 (1992) calculates 
low-temperature series for the simple cubic Ising model using a variant of the finite- 
lattice method that is apparently less efficient than ours. They obtain series for the 
magnetization to uw and the intemal energy to order 1 1 * ~ ,  thus duplicating the work 
of Sykes el al (1973) and q k e s  (unpublished) respectively.) 
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The extension of these series is particularly pertinent as their behaviour is quite 
difficult to determine. While the high-temperature series are well behaved, with 
uncertainty as to critical exponents being conlined to the fourth, or at the worst 
third, decimal place, the situation at low temperatures is far less satisfactory. For 
many years there was considerable controversy as to the symmetry or otherwise of 
the critical exponents above and below the critical temperature. That this is now 
less controversial is not based on good numerical evidence however, but rather on a 
strengthening belief in universality based on a better understanding of the connection 
between field theoly and critical phenomena. Nickel (1991) has also recently argued 
for the extension of perturbation series, in order to remove any lingering doubts 
about the equivalence of the 44 field theory, and the lattice models. 

The new low-temperature series we have obtained here permits an improved 
analysis, though the quality of the numerical estimates is still inferior to that of the 
high-temperature series. Nevertheless, by biasing our analysis with the value of the 
critical temperature, obtained from the high-temperature series, and by assuming a 
confluent exponent around (the exact value is unimportant), exponent estimates 
are obtained that are consistent with the best field-theory estimates. We have 
also extended the high-temperature zero-field free energy series, which allows us 
to estimate a considerably more accurately than has been possible previously. 

The finite-lattice method of series expansions for lattice statistics problems has 
been applied to a number of different systems on a range of two-dimensional lattices. 
The initial application was in calculating the high-temperature expansion of the three- 
state Potts model (de Neef 1975, de Neef and Enting 1977). The expansion of the limit 
of chromatic polynomials (Kim and Enting 1979) was formally a high-temperature 
expansion and the enumeration of self-avoiding polygons (Enting 1980a, Enting and 
Guttmann 1985, Guttmann and Enting 1988a) is closely related to high-temperature 
expansions. However most of the subsequent applications of the method (based 
on the work of Enting (1978a)) have been in the derivation of low-temperature or 
high-field expansions, generally on the square lattice (e.g. Enting 1980b, Adler el a1 
1983). Series for triangular lattice systems have been obtained by regarding them 
as square lattices with additional interactions (Enting 1980c, Enting and Wu 1982). 
Specific combinatorial expressions for triangular lattice systems are hown (Enting 
1980d, 1987a). However these involve the additional complication of calculating 
the partition functions of hexagonal finite lattices. The only application using full 
triangular symmetry has been in the enumeration of polygons on the triangular 
lattice (Enting and Guttmann 1992). The linite-lattice method has also been applied 
to Potts models on the chequerboard lattice (Enting 198%) and polygons on the 
honeycomb lattice (Enting and Guttmann 1989). These last two cases were treated 
as modifications of the square lattice. 

Enting (1978b) quoted some of the combinatorial results required for the finite- 
lattice method on the simple cubic lattice but until now these results have not been 
applied. In this paper we describe the formalism for obtaining cithcr high-temperature 
or low-temperature expansions for the Potts model on the simple cubic lattice. We 
present and analyse specific results for the king model case. 

The outline of the remainder of the paper is as follows. Section 2 analyses the 
combinatorial aspects of applying the finite-lattice method on the simple cubic lattice. 
Section 3 describes the expansions that we have calculated. Section 4 describes an 
analysis of these series. 
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2. Finite-lattice expansions on the simple cubic lattice 

We begin by defining the notation that we shall use throughout this series of papers. 
The Potts model is defined on a lattice in terms of a 'spin' variable, s j  at each site, 
j, taking integer values from 0 to q - 1. There is an energy difference, A E, between 
aligned and non-aligned states that interact. Generally we consider interactions 
confined to pairs of nearest-neighbour sites, ie. those joined by the bonds of the 
lattice. Sites aligned in the '0' direction differ by a field energy H from sites with 
other alignments. Thus with a(m, n) = 1 of m = n and 0 otherwise, the Hamiltonian 
is written 

A =  ~ A E ( 1 - 6 ( s i , s j ) ) + ~ H ( 1 - 6 ( s i , 0 ) )  
(id) i 

where the lint sum is over all pairs of interacting sites and the second sum is over 
all sites. 

The low-temperature expansion variable is z = exp( -@A E) where p = l / k T .  
For the field dependence, we use the expansion wriables p = exp(-PH) and 
I = 1 - p. The general Potts model high-temperature expansion variable is 

For the Ising model (ie. q = 2), only even powers of z occur and the natural low- 
temperature expansion variable is U = z z  = exp(4p.J)  and the high-temperature 
expansion variable can be witten as v = tanh(p.J) with 2J = AE. For zero- 
field on bi-partite lattices, only even powers of U have non-zero coefficients in the 
high-temperature Ising model expansion. 

The basic formulation of the finite-lattice method approximates the partition 
function per site, Z, as 

2) = (1  - z ) / ( l +  ( q  - 1)z). 

where r denotes a lattice that becomes arbitrarily large in all directions and Irl 
denotes the number of sites in r. Here A is a set of finite lattices, a, with A closed 
under the operation of intersection of finite lattices. For the simple cubic lattice, this 
general relation has the specific form: 

where Zppr is the partition function of a cuboid of dimensions p x q x T sites. For 
low-temperature expansions, the Z,,, are to be evaluated with a surrounding layer 
of fully ordered sites. For high-temperature expansions, the Z,,, are to be evaluated 
with free boundary conditions. (It is also convenient to remove common factors as 
described below.) The weights W ( p , q , ~ )  depend on the set, A, over which the 
product is taken. In approximations (20, 2b) an appropriate choice of weights will 
give 2 as a series correct up to, but not including, the order of the first connected 
graph that will not fit into any of the cuboids of set A (Enting 1978a). 

The method of Bhanot er al (1992) uses generalized helical boundary conditions 
imposed in a sequence of configurations so that they can ultimately remove the effect 
of unwanted graphs that occur under helical or periodic boundary conditions. 
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Inspection of the low-temperature expansion of the Potts model shows that the 
limiting graphs are trees that do not double back in any direction: all planes drawn 
perpendicular to bonds of the lattice intersect such trees at most once. Such a tree 
can span a cuboid of size p x q x r with p +  q +  7 - 2  sites and p +  q +  r - 3  bonds 
in the tree and Will give powers of 4(p f q + r )  - 6 or more in the Potts model 
low-temperature variable, z. 

Therefore it is appropriate to take A as the set of cuboids whose spans, U ,  satisfy 

U = p + q + r  < s. 
For this choice of A, the first incorrect low-temperature term is of order 4(s + 1) - 6, 
i.e. the series jS correct to order 4s - 3. We we the notation A ( s )  = { [ p , q , r ]  : 
p + q + r < s} to denote the set of cuboids used. 

Inspection of the high-temperature expansion shows that, for general fields, the 
same tree graphs are limiting. However, for zero field, the limiting graphs are 
maximally extended polygons. These are polygons that have at most two intersections 
with any plane perpendicular to the lattice bonds. These are the three-dimensional 
generalization of the convex polygons (Guttmann and Enting 1988b) that were used 
to obtain corrections in the polygon enumeration by GuttmaM and Enting (1988a). 
For cuboids of span s + 1 the maximally extended polygons will have 2( s f 1) - 6 steps 
so that cuboids of span <, s will give the zero-field high-temperature series correct to 
2s - 5. The combinatorial factors from Enting (1978b) give 

W ( d , w , t )  = v ( ~  - d )  v(q - w )  v(7- e )  for [ d ,  U > ,  L1 E A ( $ )  (3) 
[ P . ~ , ~ E A ( J )  

where 

This implies 

I V ( d , w , t )  = 1 for d +  w + e = s 

for d +  w + P = s - 1 

for d + w + e = s - 2  

= -5 

= 10 

= -10 

= 5  

- -1  

= O  otherwise. 

for d + w + e = s - 3  

for d + w + e = s - 4 

for d + w + E = s - 5 - 
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In actual computation it is convenient to exploit the cubic symmetry and consider 
only d < w < e. We define B ( s )  = { [ p , q , ~ ]  : p +  q +  T < s , p  < q < T). The 
expansion becomes 

WP, q, T )  = W+, q , T ) )  for P < 4 < T (66) 
*(p,q.p) 

where the sum is over all disfinct permutations, ~ ( p ,  q,  r) of the indices. 
The partition functions are constructed by using a transfer-matrix formalism to 

build up e layers of size d x w. As in aU of the most recent applications of the 
mite-lattice method, we used the approach of building up the finite lattices one site 
at a time. The computational complexity of the calculation is determined by the value 
of d x w that is required and this is determined by the limiting span s. Ekploiting the 
cubic symmetry allows the series to be generated using cuboids whose size is subject 
to 

1 < d < d,,, and d < w 6 L(s - d) /2J  and w < C 4 s - d - w. 

If s = 3m + 1 then d,, = m and the maximum size of d x w is m x m. If 
s = 3m - 1 then d,, = m - 1 and the largest sue of d x w is ( m  - 1) x m. (The 
case of s = 3m has d x w = m x m but this is of little interest because the transfer 
matrices will be the same size as is required for the case s = 3m + 1 which gives 
four extra low-temperature series terms and two extra high-temperature terms.) 

The limiting factor in the mite-lattice series computations is the size of the vector 
required to store the site configurations at the end of a partly built lattice. In a 
departure from the earlier high-temperature calculations noted in the introduction, it 
has been desirable to use a site representation rather than a bond representation 
when calculating the Z,,, required for high-temperature expansions. Thus size 
considerations are the same for both high- and low-temperature expansions. For 
the expansions of q-state models on the simple cubic lattice the number of site 
configurations required is q k  with k = d x w. For the q-state Potts model (q 2 3) 
the symmetry between the states can be used to remove redundant elements. There 
will be approximately q k / ( q  - l)! distinct vector elements. The precise number can 
be calculated using a recurrence relation. Since the present paper only considers 
q = 2 for which exactly Zk states are required, the general recurrence relation will be 
described in the second paper. For zero-field high-temperature expansions, there is 
no need to distinguish the ‘0’ state and so for a cross section of k sites, approximately 
q k / q !  vector elements are needed. 

n u s  vectors of approximately q m z / ( q  - I)! elements give Potts series correct 
to z12m+1 while vectors of q”(m-’) / ( q  - I)! elements give Potts series to ~ I ~ ’ n - 7 .  

Vectors of size 2” elements give Ising series correct to tchm while vectors of size 
2m(m-1) elements give Jsing series correct to u6m-4. For zero-field high-temperature 
expansions, vectors of approximately q m * / q !  elements give Potts series correct to 
v6m--3 while vectors of qm(m-l)/q! elements give Potts series to v67n-7. Vectors of 
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size ZmZ-I elements give Ising series correct to uh-4 while vectors of size 2m*-m-1 
elements give Ising series correct to uh-8. 

In contrast, for the square lattice, the cross section, k, corresponds to the width 
of the lattice (expressed as a number of sites) and so vectors of size ~3 q k / ( q  - l)!, 
will give Potts model low-temperature series correct to 4k + 3. Duality gives the 
high-temperature series to the same order. Table 1 lists the low-order values of m 
together with the number of series terms obtainable for models on the simple cubic 
lattice and the size of vector required for the Ising model. 

A J Guttmann and I G Enting 

Table l. Combinatorial factors determining the computational complexity of finite-lattice 
series expansions on the simple cubic lattice. Column 1 gives the various possible cutoff 
pinu as specified by the largest cmss-section that need be considered after nuking 
optimal use of cubic symmetry. ?he second column is s, the largest value of the sum 
of length plus width plus depth for any of the cuboids used in the expansion. me 
low-temperature series for the Potts model can be oblained LO onler and the 
high-temperature series to u ~ ~ - ~ .  King model series can be obtained to uz*--z and 
u ~ ' - ~ .  m e  final column, R(. ,2) ,  gives h e  number of vector elements required for Ihe 
low-temperature king expansion. 

Order of Potts using) series 

Cmss sedion 8 Low-T Hieh-T R ( d  x w . 2 )  

1 x 1  4 13 (61 3 (2) 2 
4 

16 
2 x 3  8 29 (14 11'60) 64 
3 x 3  10 37 (18) 15 (14) 512 
3 x 4  11 41 (20) 17 (16) 4096 
4 x 4  13 49 (24) 21 (20) 6 536 
4 x 5  14 53 (261 23 (221 1048 576 

While Bhanot ef a1 (1992) compared the combinatorial complexity of their 
technique with the finite-lattice method with periodic boundary conditions, they made 
no comparisons with our formalism (see Enting 1987a, GUttmaM and Enting 1990b) 
using k e d  boundary conditions. Their note gives too few details of the characterstics 
of their cancellation procedure for us to make a general comparison. However from 
the specific example, it appears that they need 24 spins (i.e. Zz4 configurations) to 
reach U%, while, as shown in table 1, we require only 16 spins. 

In principle, it is possible to consider extending the series by determining 
correction terms to the finite-lattice expansion. Previous studies (Enting and Wu 
1982, Guttmann and Enting 1988b) have obtained explicit expressions for the leading- 
order correction terms for various models. For the minimal spanning trees direct 
enumeration seems difficult. However, examination of the series shows that M such 
trees will give a correction of 

I 

- 1 ) ~ ~ ~ - ~ [ ~ ~ ~ - ~  + ;(4 - - 2)_-43-1] 

to the low-temperature series for the q-state Potts model. For q 2 3 the number M 
can be determined by noting the correction required at the corresponding s value 
for the less complex q = 2 (Ising model) case. For the high-temperature series, the 
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zero-field correction from maximally extended polygons is of the form K ( q -  
Again the Ising case can be used to determine the correction for higher q. Since the 
smaller the q the larger the lattice that can be used, our highest-order Ising cases can 
be used to provide the correction terms for future q = 3 studies, as used in paper I11 
of this series (Enting and Guttmann 1993). 

3. Expansions 

The Mite-lattice method obtains the high- and low-temperature expansions for the 
partition function, 2. For actual calculations, specific normalizations must be chosen. 
For low-temperature expansions, the appropriate choice is to define the partition 
function such that the fully aligned (all sites '0') state is taken as having zero energy, 
since the low-temperature series is a perturbation expansion about this state. This 
is the normalization that we have chosen for equation (l), defining the Hamiltonian. 
In this normalization, the partition function is often denoted A. On the simple cubic 
lattice, the king model expansion begins 

A = 1 + u3/1 +3u5p2 + .  ... (7) 

As noted above, we express the field variable as p = 1 - z and, in order to reduce 
the memory required by the computer program, truncate the field dependence at x 2  
so that 

m 

A. = A,un 
n=O 

and define an order parameter 

and susceptibility 

(9) 

We have determined the low-temperature expansion UI g cross-sections up to 4 x 5, 
giving A", A4 and x correct to U%. The coefficients A,, m*, c, are listed in table 2. 

The calculations build up the tinite lattice one site at a time, running through 
all q states of the site and applying a weight of 1 for state '0' and p (expressed as 
1 - z) for all other states. The bonds linking each new site to the partly constructed 
lattice are given weight 1 if the sites at each end are in the same state and weight 
z otherwise. For low-temperature expansions, the set of bonds considered includes 
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'Igbk 2 Coefficients in law-temperature expansions 631 Ao, M and x and high- 
temperature erpansion for 9. defined by equations Q), (IO), (11) and (17). The 
incomplete coefficient, a x ,  was not derived using the finite-lattice method, but represenls 
an extrapolation obtained using differential approximants. 

~ 

n A. m n  Cn a,, 

0 1 1 0 1 
3 1 -2 1 0 
4 0 0 0 3 
5 3 -12 12 0 
6 -3 14 - 14 22 
7 U -90 135 0 
8 -30 192 -276 192 
9 101 -792 1520 0 
10 -261 2148 -4056 2046 
11 807 -7716 17 778 0 
12 -2308 23 262 - 54 392 24 853 
13 7065 -7-3512 213 522 0 
14 -21 171 252 054 - mo 362 329 334 
15 65 337 -846 628 2601 674 0 
16 -200934 2 753 520 -88368L2 4649 (91 
17 627 249 -9205800 31925046 0 
18 -1962034 30 371 124 -110323056 68 884 356 
19 6 192066 - 101 585 544 393 008 7L2 0 
20 -19610346 338 095 596 - 1369533 048 1059830 112 
21 62482527 -1 133491 188 4844047090 0 
22 -199807110 3794 908 752 -16 947 396 OOO 16 803 862992 
23 641 837193 -12758932 158 59723296431 0 
24 -2068695927 429M505U30 -2G9328634116 27337nmaxx 
25 6691611633 -144655483440 736260986208 0 
26 -21710W1944 488032130664 -2582605180212 

bonds connecting the finite lattice to an outer boundary of sites taken as being in 
state '0'. 

The high-temperature expansions have been obtained using cross-sections up to 
4 x 5, giving 2 to order uZ.  While table 1 indicates that the vector size increases by a 
factor of 16 (or more generally q4)  on going from 4 x  4 to 4 x  5, for high-temperature 
expansions, the memory requirements are reduced by a factor of 2 (or more gencrally 
a factor of q )  by making full use of the symmeq and by a further factor of 3 since the 
high-temperature field dependence is truncated at zeroth order compared with the z2 
truncation of the low-temperature series. In principle it is possible to further reduce 
the memory requiremenu for the high-temperature Ising free energy calculation by 
making use of the ferromagnetic/antiferromagnetic symmetry of the zero-field Ising 
model to reduce the vector sizes by a further factor of 2 Since we have been using 
programs designed for general q, we have not exploited this possibility. 

For the high-temperature expansions, the field weighting is not included and the 
set of bonds does not include any bonds extending beyond the finite lattice. However 
the main difference from the low-temperature expansion arises from the relation 
z = (1 - U)/( 1 + (q - 1)v). For a finite lattice a, rather than expand A- we expand 

@a = q - S ( " ) ( l + ( ~ - l ) u ) b ( " ) A ,  (12) 
whence 
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where b ( a )  and ~ ( a )  are the number of bonds and sites respectively in lattice a. 
The expansion of ea is obtained by giving bonds a weight of 1 -k ( q  - 1)v for pairs 
of sites in the Same state and weight 1 - w othenvise. An additional weight of q-' is 
applied at each site. 

For the infinite lattice limit, we have 

4 1 - Y I Z ( l f ( q - l ) z ) V / 2 ( P ( v ) =  4 ( 1 + ( ~ - l ) ~ ) - ~ / * G ( v ) = A ~  
oEB(8)  

(14) 

where U is the lattice coordination number so that u/2 is the number of bonds 
per site, which is 3 on the simple cubic lattice. By using the facts that 
CaEB(s) b(a)V(a) = v /2  and CmEB(a) s(a)V(a)  = 1 we obtain the relation 

It is this last expression that we use in our high-temperature calculations. 
For the Ising model, it is usual to shift the zero of energy so that parallel and 

antiparallel pairs have energies &.I with J = &A E.  This leads to the more familiar 
form of the Ising model expansion: 

2 = exp(+J/lcT)V/ZA = 2 [ c o ~ h ( J / k T ) ] " ~ ~ ~ ) ( u ) .  (16) 

The high-temperature expansion for the free energy is written as 

(or more generally 1 -E 3(q - 1 ) ~ ' .  . .). The coefficients (1. for n < 22 are listed in 
table 2. 

The internal energy, U, is derived from the free energy, F, or the partition 
function A by 

For low temperatures we use 

to give 

dA 
dz 

U = A E z  -A-'. 

For high temperatures we use z = (1 - v ) / ( l  +- ( q  - 1 ) ~ )  and d,-/dv = 
- q / ( 1 + ( q - 1 ) v ) ~  togive 
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whence 

A J Guttnlann and I G Enting 

U = AE--(1 v q - 1  - v )  - A E  (1 - v) ( l+  (q - 1)v) A Ln @U(”), 
2 q  q du 

The high- and low-temperature expansions were computed using two very similar 
Fortran programs written for general (integer) q. Our programs work in terms of 
the general variables z or U, even in those special cases where only even powers 
occur. Most of the other technical aspects are similar to our previous calculations 
using the finite-lattice method. The calculations were performed using arithmetic 
modulo various primes, p, slightly below 215. Calculations were performed using 32- 
bit integers and the large vectors of residues stored as 16-bit integers. The factor 
(q - l)-’ required in the general form of M is calculated as (q  - l ) P - 2  modulo p 
by virtue of Fermat’s theorem. Similarly the factors q-’ required in evaluating the 

and A, are of the form 
1+kv4+. . .and l+ (q - l )pzY+. . .  respectively, the expansions for negative powers 
of the @a and A, can readily be calculated. The programs were run on an IBM 
U)90/400J with 4 Gbyte of main memory and 2 Gbyte of extended storage. 

were expressed as qp-’  modulo p. Since all of the 

4. Analysis 

Before presenting the analysis of our new series, we note a number of relevant prior 
studies. Gaunt and Sykes (1973) extended the diamond and FCC low-temperature 
series, and obtained 0.307 < p < 0.317 and a value for y around 1.27-1.30. They 
noted that the sequences of exponent estimates were converging rather slowly. A 
range of previous work was consistent with these estimates. At high temperatures, 
Sykes et al (1972) and Camp er nl (1976) found estimates for a consistent with 0.125, 
in accordance with the belief at the time that a was a simple fraction, probably & 

The field-theory estimates of Le Guillou and Zinn-Justin (1980), in which 
scaling and highflow-temperature exponent symmetry are implicit, are y = 1.241(2), 
a = 0.110(5), p = 0.325(2). Recently Oitmaa er ~l (1991) obtained extended 
low-temperature series for the (2+1)-dimensional king model, equivalent to a 2, 
gauge model in 2+1 dimensions, which is in the three-dimensional Ising universality 
class. They also derived and analysed series on the triangular and honeycomb 
lattices. Unbiased exponent estimates were given as -/ = 1.28(2), [3 = 0.311(4) 
and a = 0.11(4), while biased estimates were given as y = 1.25(2), [3 = 0.318(4) 
and a = 0.0%(6). 

Nickel (1991) recently re-examined the q54 field theory exponents, and showed 
that, by permitting a second confluent exponent, critical cxponent estimates were 
obtained that agreed lather well with those obtained from high-temperature series 
expansions. Nickel’s preferred values are y = 1.238, U = 0.630, 7) = 0.0355. Hence 
a = 0.110 and p = 0.326. The critical exponent A I  = w,v = 0.53. 

Recently Mojumder (1991) has developed a theory based on partial non- 
renormalization of superconformal dimensions of matter fields on a (2,O) 
supersymmetric string world sheet. A consequence of this theory is the predicition of 
critical exponents which are supposed to be exact. These are c1 = $, /3 = $, from 
which follows y = 

Before analysing the newly obtained series, we remark that the analysis of the low- 
temperature series is made more dillicult than the analysis of their high-temperature 

and U = $. 



Simple cubic Ising series 817 

counterparts by the presence of non-physical singularities closer to the origin than 
the physical singularity. While differential approximants effectively afford analytic 
continuation beyond the nearest singularity, the series coefficients are nevertheless 
dominated by the non-physical singularity. Another approach to this difficulty is 
to apply a transformation, to move the physical singularity closer to the origin 
than the non-physical singularity. However, such 'singularity-moving' transformations 
introduce long-period oscillations (Hunter 1987, Guttmann 1989) thus rendering 
suspect extrapolations based on such transformed series as in the analysis by Bhanot 
et a1 (1992). 

Another problem with the analysis of the three-dimensional Ising series is the 
presence of confluent singularities (which are extremely weak or non-existent in 
the two-dimensional model). Both field-theory and high-temperature series analysis 
suggests a value for the confluent exponent not very different from (x5. Roskies (1981) 
introduced an effective transformation for analysing such series, in which one replaces 
the original expansion variable z by a new variable y, defined by 1- y = ( l - ~ / z ~ ) ~ / ~ .  
If the original series had square root correction terms, the transformed series has 
analytic correction terms. If there were no square root correction terms, then nothing 
is lost by applying this transformation. One problem is that the critical temperature 
must be accurately hown, but for the three-dimensional king model this is the 
case. The consensus of extensive high-temperature series and Monte Carlo work is 
tanh(J/kT,) = 0.218093, or uc = exp(-4J/kTC) = 0.4120.294, with errors being a 
few parts in the sixth decimal place (Guttmann 198%). 

Our initial analysis of the three low-temperature series (specific heat, 
magnetization and susceptibility) by Pad6 approximants and differential approximants 
was not particularly illuminating. Exponent estimates were a' = -0.1 to 0.2, 
p = 0.30 to 0.32 and y' = 1.2 to 1.3. Biased estimates (with the critical point 
specified) were a' = O.ZO,p % 0.32 and y' = 1.25. 

Table 3. Estimares of p using Dlog Pad6 approximants to &skies-transformed series 

N [N-ZIN] 
5 0.4192 
6 03261 
7 0.4559 
8 03027 
9 0.3358 

10 03275 
11 0.3270 
12 0.3290 
13 0.3286 

0.3590 
0.3346 
0.3437 
0.3388 
0.3419 
0.3186 
0.3318 
0.3274 
0.2154 

[NINI [N + UN1 [N + 2/NI 
0.2290 0.5032 0.3240 
0.3431 0.3437 0.3325 
0.3431 0.3332 0.3326 
0.3258 0.3342 0.3322 
0.3731 0.29W 0.3279 
0.3580 0.3215 0.3230 
0.3233 0.3210 0.3391 
0.2624 0.2113 11x86 

Analysing the Roskies-transformed series by evaluating Dlog Pad6 approximants at 
y = 1 gave the results shown in tables 3 to 5. The approximants are fairly consistent, 
a few wildly deviant ones being due to defective approximants. For all three exponents 
we have taken the mean of the last few values (from 14 to 16 approximants), and 
ignored the wildly different outlying ones. The mean of these approximants, with 
error given as one standard deviation, is a' = 0.124 i 0.006, 0 = 0.329 =k 0.009, 
y' = 1.251 & 0.028 

The effect of allowing for the correction-to-scaling shows that its neglect in the 
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Table A Estimates of y' using Dlog Pad6 approximants to Roskies-transformed series. 

N [N-ZJN] [ N - I J N ]  [ N I N )  [ N f l I N ]  [N+2,"] 
5 1.1962 1.2342 1.2997 1.38% 1.1646 
6 1.4124 1.4975 1.3363 1.2835 1.1892 
7 1.4200 1.3068 1.3431 25047 1.1088 
8 1.7242 1.2416 l.2809 1.2551 1.2049 
9 1.2981 1.2655 1.2940 1.2087 1.2047 

10 2.7628 1.2466 1.2493 1.2767 1.2511 
11 1.2494 1.2461 1.2605 
12 1.2643 

Table 5. Estimates of e' using Dlog Pad6 approximants lo Roskies-lransfomcd series. 

N [N-ZJN] [N-IJN] [NIN] [ N + l I N ]  [ N + Z / N ]  
5 0.1850 0.1197 0.1102 ai410 0.0829 
6 0.1078 0.1173 0.1236 0.1319 0.1265 
7 0.1224 0.1131 0.1284 0.1329 0.1109 
8 0.1260 0.1207 0.1239 0.1261 0.1364 
9 0.1234 0.1686 0.1226 0.1208 0.1658 

10 0.1221 0.1214 0.1227 4.686 0.2232 
11 0.1221 0.1182 0.1743 
12 0.1375 

analysis by Bhanot et a1 (1992) is an even more serious problem for their analysis 
than the use of the Euler transformation. 

It can be seen that, with the exception of the estimate of a', the exponent 
estimates above are consistent with the field-theory estimates. The value for a' 
just fails to overlap the range of the field-theoly estimate, but we believe that the 
high-temperature series result (see below) must also be taken into account. 

We have also tested the sensitivity of our estimates to changes in both the 
critical-point estimate, and the exponent estimate used in the Roskies transformation. 
Changing the estimate of the critical point by two parts in the fifth significant digit 
produced a change in the exponent estimate of one-tenth of the error estimates 
quoted above. That change in the critical point is far geater than the uncertainty 
in the critical point, so that we can safely assert that the results quoted include 
errom due to the uncertainty in the critical point. Changing the exponent estimate 
to 0.53 from the value 0.5 used in the Roskies transformation produced an error that 
was less than one-fifth of the errors quoted above, so that the uncertainty in the 
correction-to-scaling exponent is also negligible in this analysis. 

We have also looked carefully at the non-physical singularity that is closer to the 
origin than the physical singularity. We find its position to be at 7~ = -0.2853~0.0003, 
and the exponents of the susceptibilty, magnetization and specific heat to be w 1.03, 
-0.01 and 1.01 respectively. It is ditficult not to suggest that these are 1, 0 and 1 
respectively, with presumably logarithmic corrections. These values also satisfy the 
same scaling relation a'+ 2p f y' = 2 that the exponents at the critical point satisfy, 
though the thermodynamic argument that leads to this result at the critical point is 
not obviously applicable in this non-physical region. 

For the high-temperature series, the critical temperature is the radius of 
convergence of the series. It follows that the ratio method and its variants can be 
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used. Unbiased differential approximants, using the method of analysis described in 
Guttmann (1987a) give v: = 0.0475185, o = 0.126. Utilizing the linear dependence 
between the estimates of vc and a gives a biased estimate of 0.11 for a at the correct 
v: = 0.047565. 

With a 'correction-to-scaling' exponent close to 0.5, the ratio of successive terms 
in the specific heat expansion is expected to behave as rn = p[l + (a - l ) / n  + 
c/n3l2 + O( 1/n2)] so estimators of a are given by the sequence ( vm/p - 1)n + 1 = 
al + c/n'/'+ O( l/n) where p = q2. In figure 1 we show the plot of this sequence 
against l /nllz.  The series we have used is the expansion of C,/R in powers of v2, 
just as was used by Sykes (1972), but with three further terms. Linear regression to the 
data gives a = 0.113 - 0.0637/n112 + 0.389/n. As we have shown in previous work, 
the method of differential approximants can accurately predict the most significant 
digits of the next term in the series (see e.g. Guttmann and Enting 1988a). In this way 
we have estimated the coefficient of vX  in the zero-field high-temperature partition 
function to be 2.73376 x lo", where only the last quoted digit is uncertain. Using 
the additional term in the analysis just described, we obtain an estimate for o( of 
0.111, with the correction terms given by -0.0511/n'/2 + 0.364/n. This estimate of 
a is impervious to the uncertainty in the estimated coefficient. We conclude from 
this analysis that a = 0.11O=kO.o05. The comparatively small amplitude of the term 
proportional to l /nllz helps us to understand why the series is so well behaved. 

0.114 4 
0.20 0.22 0.24 0.26 0.28 0.30 

Figure 1. Ratio method estimates of 0,  plotted against nlI2. The series used was CH JR. 
expanded in powers of v2. The slope gives the amplitude of the 'correction-to-scaling' 
term and the intercept gives the estimated value of a after taking the wrrection-to-scaling 
into acmunt. 

Recently, Liu and Fisher (1990) studied the correction-to-scaling amplitudes of 
the three-dimensional Ising model and argued that the amplitudes of the correction- 
to-scaling term should be negative. Writing C = Altl--[l+ asltls + alt  +. . .] where 
t = (T - T,)/T, and 6 = our result transforms to a. = -0.040, which has the 
predicted sign. 
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Biased first-order differential approximants give a = 0.104 f 0.018, where the 
analysis is precisely that described in Guttmann (1987a). The error bars correspond 
to two standard deviations. A Roskies-transformed Pad6 analysis was also performed 
for the high-temperature series, paralleling the low-temperature investigation. The 
short series meant that very few approximants were obtained, and so the results are 
not particularly helpful (exponent estimates in the range 0.08 to 0.3 were obtained). 

5. Concluding remarks 

The calculations presented here have shown that on the simple cubic lattice the finite- 
lattice method of series expansion compares favourably with conventional expansion 
methods. However, there is not the dramatic difference that occurs for many two- 
dimensional problems. Nevertheless, significant extensions of both high- and low- 
temperature series have been obtained. 

Our exponent estimates are all consistent with field-theory exponent estimates. 
The two best behaved series give 0 = 0.329 f 0.009 and a = 0.110 f 0.005. The 
estimates of a’ and y’, while consistent with field-theory estimates, had rather wide 
error bars, and so the agreement with field theory was less convincing. Our estimates 
of a and p are not consistent with the conjectured exact values of Mojumder. 
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